News from the τ -lepton

Klaus Mönig

Encoder Ken Hayes

Overseer Klaus Mönig

Berkeley responsible Juerg Beringer

Branching ratio review Ken Hayes

Decay parameters review Achim Stahl

τ-Mass

- Best result is still threshold scan from BES (1996)
- Competitive result from KEDR (Novosibirsk, 2007)
- Competitive result also from BELLE with reconstruction method (2007)
- All results are consistent

au-Lifetime

- Significant results from LEP (+CLEO)
- Last publication 2004
- All results consistent

Decay (Michel) parameters

- Main input still LEP (+CLEO, ARGUS)
- Last publication 2001
- Expert average (Achim Stahl) including all correlations

au-Branching Ratios

Measurements:

- Measurements of branching ratios are still dominated by LEP
- 1st very precise results with identified π^{\pm} and K^{\pm} from Barbar and Belle
- Branching ratios are determined with a constraint fit with 31 basis modes Philosophy: all decays into particles which themselves decay largely electroweak (incl. η , ω)
- Fit quality good ($\chi^2/\text{ndf} = 95.7/100$) although many modes with error scaling
- Currently miss modes with $\Sigma BR = (0.08 \pm 0.01)\%$, 0.055% of this would be relatively easy to include

Basis modes in fit

$$e^{-}\overline{\nu}_{e}\nu_{\tau}$$
 $\mu^{-}\overline{\nu}_{\mu}\nu_{\tau}$
 $\pi^{-}\nu_{\tau}$
 $\pi^{-}\pi^{0}\nu_{\tau}$
 $\pi^{-}2\pi^{0}\nu_{\tau}$ (ex. K^{0})
 $\pi^{-}3\pi^{0}\nu_{\tau}$ (ex. K^{0})
 $h^{-}4\pi^{0}\nu_{\tau}$ (ex. K^{0})
 $K^{-}\nu_{\tau}$
 $K^{-}\pi^{0}\nu_{\tau}$
 $K^{-}2\pi^{0}\nu_{\tau}$ (ex. K^{0})
 $K^{-}3\pi^{0}\nu_{\tau}$ (ex. K^{0})
 $\pi^{-}\overline{K}^{0}\nu_{\tau}$
 $\pi^{-}\overline{K}^{0}\pi^{0}\nu_{\tau}$
 $\pi^{-}K^{0}_{S}K^{0}_{S}\nu_{\tau}$
 $\pi^{-}K^{0}_{S}K^{0}_{L}\nu_{\tau}$
 $K^{-}K^{0}\nu_{\tau}$

$$K^{-}K^{0}\pi^{0}\nu_{\tau}$$

$$\pi^{-}\pi^{+}\pi^{-}\nu_{\tau} \text{ (ex. } K^{0}, \omega)$$

$$\pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau} \text{ (ex. } K^{0}, \omega)$$

$$K^{-}\pi^{+}\pi^{-}\nu_{\tau} \text{ (ex. } K^{0})$$

$$K^{-}\pi^{+}\pi^{-}\nu_{\tau} \text{ (ex. } K^{0})$$

$$K^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau} \text{ (ex. } K^{0}, \eta)$$

$$K^{-}K^{+}\pi^{-}\nu_{\tau}$$

$$K^{-}K^{+}\pi^{-}\nu_{\tau}$$

$$K^{-}K^{+}\pi^{-}\nu_{\tau}$$

$$h^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau} \text{ (ex. } K^{0}, \omega, \eta)$$

$$h^{-}h^{-}h^{+}3\pi^{0}\nu_{\tau}$$

$$3h^{-}2h^{+}\nu_{\tau} \text{ (ex. } K^{0})$$

$$3h^{-}2h^{+}\pi^{0}\nu_{\tau} \text{ (ex. } K^{0})$$

$$h^{-}\omega\nu_{\tau}$$

$$h^{-}\omega\nu_{\tau}$$

$$\eta\pi^{-}\pi^{0}\nu_{\tau}$$

$$\eta K^{-}\nu_{\tau}$$

A word on error scaling

- Many modes have few (two or three) measurements
- In this case the χ^2/ndf can go significantly above 1 with a large probability
- Some mode with a probability of **z** 30% get rescaled
- In total 15 out of 60 modes get rescaled
- The probability distribution for these modes looks ok
- The lowest probability is 1%
- Maybe we should base the scaling decision on probability and not on χ^2/ndf

Limits:

- Limits exist for most forbidden modes
- The interesting ones have been remeasured by Barbar and Belle
- Typical limits now are 10^{-8} to 10^{-7} (this is typically an improvement by more than a factor 10!)

Conclusions

- The τ is still an active field
- The b-factories have the statistics for large improvements if they find the manpower and get the systematics under control
- We have to adapt our procedures accordingly